Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.844
1.
Arch Microbiol ; 206(6): 247, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713374

Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.


Archaea , Bacteria , Biotechnology , Extreme Environments , Extremophiles , Extremophiles/metabolism , Archaea/metabolism , Archaea/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
2.
BMC Genomics ; 25(1): 432, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693486

BACKGROUND: The folate cycle of one-carbon (C1) metabolism, which plays a central role in the biosynthesis of nucleotides and amino acids, demonstrates the significance of metabolic adaptation. We investigated the evolutionary history of the methylenetetrahydrofolate dehydrogenase (mTHF) gene family, one of the main drivers of the folate cycle, across life. RESULTS: Through comparative genomic and phylogenetic analyses, we found that several lineages of Archaea lacked domains vital for folate cycle function such as the mTHF catalytic and NAD(P)-binding domains of FolD. Within eukaryotes, the mTHF gene family diversified rapidly. For example, several duplications have been observed in lineages including the Amoebozoa, Opisthokonta, and Viridiplantae. In a common ancestor of Opisthokonta, FolD and FTHFS underwent fusion giving rise to the gene MTHFD1, possessing the domains of both genes. CONCLUSIONS: Our evolutionary reconstruction of the mTHF gene family associated with a primary metabolic pathway reveals dynamic evolution, including gene birth-and-death, gene fusion, and potential horizontal gene transfer events and/or amino acid convergence.


Evolution, Molecular , Methylenetetrahydrofolate Dehydrogenase (NADP) , Multigene Family , Phylogeny , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Archaea/genetics , Archaea/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Metabolic Networks and Pathways/genetics , Gene Transfer, Horizontal
3.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704527

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Archaea , Lakes , Salinity , Lakes/microbiology , Lakes/chemistry , Archaea/genetics , Archaea/classification , Archaea/metabolism , Tibet , High-Throughput Nucleotide Sequencing , Phylogeny , Biodiversity , Ecosystem , RNA, Ribosomal, 16S/genetics , Nitrogen/metabolism , Nitrogen/analysis , DNA, Archaeal/genetics
5.
Geobiology ; 22(3): e12594, 2024.
Article En | MEDLINE | ID: mdl-38700397

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Bacteria , Caves , Minerals , Caves/microbiology , Minerals/analysis , Bacteria/classification , Bacteria/metabolism , Nevada , Archaea/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Parks, Recreational , RNA, Ribosomal, 16S/genetics , Sulfuric Acids , Phylogeny , Microbiota , Calcium Sulfate/chemistry , Microscopy, Electron, Scanning
6.
J Hazard Mater ; 471: 134343, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640671

Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.


Archaea , Biofilms , Geologic Sediments , Microplastics , Polyethylene , Polypropylenes , Wetlands , Archaea/drug effects , Archaea/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Microplastics/toxicity , Biofilms/drug effects , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Ecosystem
7.
Arch Microbiol ; 206(5): 234, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664262

Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.


Archaea , Coal , Methane , Methane/metabolism , Archaea/metabolism , Archaea/genetics , Ecosystem , Phylogeny
8.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593075

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Archaea , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Archaea/metabolism , Photosynthesis , Glycolates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Oxygenases/metabolism , Pentoses
9.
Mar Drugs ; 22(4)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667784

Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.


Antineoplastic Agents , Antioxidants , Carotenoids , Neoplasms , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Carotenoids/pharmacology , Carotenoids/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Animals , Archaea/metabolism
10.
Sci Adv ; 10(17): eadl2281, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669328

In deep-sea cold seeps, microbial communities thrive on the geological seepage of hydrocarbons and inorganic compounds, differing from photosynthetically driven ecosystems. However, their biosynthetic capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33 metatranscriptomes, and 7 metabolomes derived from nine different cold seep areas to investigate their secondary metabolites. Cold seep microbiomes encode diverse and abundant biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied bacteria and archaea, including key mediators of methane and sulfur cycling. The BGCs encode diverse antimicrobial compounds that potentially shape community dynamics and various metabolites predicted to influence biogeochemical cycling. BGCs from key players are widely distributed and highly expressed, with their abundance and expression levels varying with sediment depth. Sediment metabolomics reveals unique natural products, highlighting uncharted chemical potential and confirming BGC activity in these sediments. Overall, these results demonstrate that cold seep sediments serve as a reservoir of hidden natural products and sheds light on microbial adaptation in chemosynthetically driven ecosystems.


Geologic Sediments , Metagenome , Microbiota , Geologic Sediments/microbiology , Bacteria/metabolism , Bacteria/genetics , Metabolome , Ecosystem , Secondary Metabolism , Archaea/metabolism , Archaea/genetics , Multigene Family , Cold Temperature , Metabolomics/methods , Phylogeny , Metagenomics/methods
11.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38632040

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.


Archaea , Geologic Sediments , Methane , Oxidation-Reduction , Ponds , Methane/metabolism , Ponds/microbiology , Anaerobiosis , Geologic Sediments/microbiology , Archaea/metabolism , Archaea/genetics , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Eutrophication , RNA, Ribosomal, 16S/genetics , Ferrous Compounds/metabolism
12.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38632042

Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.


Bicarbonates , Carbon Cycle , Carbon Isotopes , Metagenome , Microbiota , Bicarbonates/metabolism , Carbon Isotopes/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Carbon/metabolism , Hydrothermal Vents/microbiology , Groundwater/microbiology , Chemoautotrophic Growth , Archaea/genetics , Archaea/metabolism
13.
Sci Total Environ ; 927: 171642, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38479518

Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.


Ammonia , Archaea , Bacteria , Nitrogen , Oryza , Oxidation-Reduction , Phosphorus , Soil Microbiology , Soil , Archaea/metabolism , China , Bacteria/metabolism , Ammonia/metabolism , Soil/chemistry , Animals , Fishes , Fertilizers/analysis , Agriculture/methods
14.
Environ Sci Technol ; 58(11): 4979-4988, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38445630

Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.


Archaea , Geologic Sediments , Archaea/genetics , Archaea/metabolism , Geologic Sediments/microbiology , Anaerobiosis , Methane , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Phylogeny
15.
Physiol Plant ; 176(2): e14244, 2024.
Article En | MEDLINE | ID: mdl-38480467

Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.


Cytochrome P-450 Enzyme System , Plants , Archaea/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Phylogeny , Plants/genetics , Plants/metabolism
16.
Sci Total Environ ; 923: 171395, 2024 May 01.
Article En | MEDLINE | ID: mdl-38447730

Ammonia-oxidizing microorganisms, including AOA (ammonia-oxidizing archaea), AOB (ammonia-oxidizing bacteria), and Comammox (complete ammonia oxidization) Nitrospira, have been reported to possess the capability for the biotransformation of sulfonamide antibiotics. However, given that nitrifying microorganisms coexist and operate as communities in the nitrification process, it is surprising that there is a scarcity of studies investigating how their interactions would affect the biotransformation of sulfonamide antibiotics. This study aims to investigate the sulfamonomethoxine (SMM) removal efficiency and mechanisms among pure cultures of phylogenetically distinct nitrifiers and their combinations. Our findings revealed that AOA demonstrated the highest SMM removal efficiency and rate among the pure cultures, followed by Comammox Nitrospira, NOB, and AOB. However, the biotransformation of SMM by AOA N. gargensis is reversible, and the removal efficiency significantly decreased from 63.84 % at 167 h to 26.41 % at 807 h. On the contrary, the co-culture of AOA and NOB demonstrated enhanced and irreversible SMM removal efficiency compared to AOA alone. Furthermore, the presence of NOB altered the SMM biotransformation of AOA by metabolizing TP202 differently, possibly resulting from reduced nitrite accumulation. This study offers novel insights into the potential application of nitrifying communities for the removal of sulfonamide antibiotics (SAs) in engineered ecosystems.


Sulfamonomethoxine , Sulfamonomethoxine/metabolism , Ammonia/metabolism , Ecosystem , Soil Microbiology , Oxidation-Reduction , Phylogeny , Bacteria/metabolism , Archaea/metabolism , Nitrification , Biotransformation , Anti-Bacterial Agents/metabolism , Sulfanilamide/metabolism
17.
J Agric Food Chem ; 72(12): 6519-6525, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38497614

Histamine, found abundantly in salt-fermented foods, poses a risk of food poisoning. Natronobeatus ordinarius, a halophilic archaeon isolated from a salt lake, displayed a strong histamine degradation ability. Its histamine oxidase (HOD) gene was identified (hodNbs). This is the first report of an archaeal HOD. The HODNbs protein was determined to be a tetramer with a molecular weight of 307 kDa. HODNbs displayed optimum activity at 60-65 °C, 1.5-2.0 M NaCl, and pH 6.5. Notably, within the broad NaCl range between 0.5 and 2.5 M, HODNbs retained above 50% of its maximum activity. HODNbs exhibited good thermal stability, pH stability, and salinity tolerance. HODNbs was able to degrade various biogenic amines. The Vmax of HODNbs for histamine was 0.29 µmol/min/mg, and the Km was 0.56 mM. HODNbs exhibited high efficiency in histamine removal from fish sauce, namely, 100 µg of HODNbs degraded 5.63 mg of histamine (37.9%) in 10 g of fish sauce within 24 h at 50 °C. This study showed that HODNbs with excellent enzymatic properties has promising application potentials to degrade histamine in high-salt foods.


Histamine , Oxidoreductases , Animals , Histamine/metabolism , Archaea/metabolism , Sodium Chloride , Biogenic Amines/metabolism , Food Safety
18.
Commun Biol ; 7(1): 380, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38548921

S-Adenosyl-L-homocysteine hydrolase (SAHH) reversibly cleaves S-adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine-dependent methylation reactions. The conversion of S-adenosyl-L-homocysteine into adenosine and L-homocysteine plays an important role in the regulation of the methyl cycle. An alternative metabolic route for S-adenosyl-L-methionine regeneration in the extremophiles Methanocaldococcus jannaschii and Thermotoga maritima has been identified, featuring the deamination of S-adenosyl-L-homocysteine to S-inosyl-L-homocysteine. Herein, we report the structural characterisation of different archaeal SAHHs together with a biochemical analysis of various SAHHs from all three domains of life. Homologues deriving from the Euryarchaeota phylum show a higher conversion rate with S-inosyl-L-homocysteine compared to S-adenosyl-L-homocysteine. Crystal structures of SAHH originating from Pyrococcus furiosus in complex with SLH and inosine as ligands, show architectural flexibility in the active site and offer deeper insights into the binding mode of hypoxanthine-containing substrates. Altogether, the findings of our study support the understanding of an alternative metabolic route for S-adenosyl-L-methionine and offer insights into the evolutionary progression and diversification of SAHHs involved in methyl and purine salvage pathways.


Archaea , S-Adenosylmethionine , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Archaea/metabolism , Adenosine/metabolism , Methionine , Homocysteine
19.
Water Res ; 253: 121354, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38428359

DNA-based monitoring of microbial communities that are responsible for the performance of anaerobic digestion of sewage wastes has the potential to improve resource recoveries for wastewater treatment facilities. By treating sludge with propidium monoazide (PMA) prior to amplicon sequencing, this study explored how the presence of DNA from dead microbial biomass carried over with feed sludge may mislead process-relevant biomarkers, and whether primer choice impacts such assessments. Four common primers were selected for amplicon preparation, also to determine if universal primers have sufficient taxonomic or functional coverage for monitoring ecological performance; or whether two domain-specific primers for Bacteria and Archaea are necessary. Anaerobic sludges of three municipal continuously stirred-tank reactors in Victoria, Australia, were sampled at one time-point. A total of 240 amplicon libraries were sequenced on a Miseq using two universal and two domain-specific primer pairs. Untargeted metabolomics was chosen to complement biological interpretation of amplicon gene-based functional predictions. Diversity, taxonomy, phylogeny and functional potentials were systematically assessed using PICRUSt2, which can predict community wide pathway abundance. The two chosen universal primers provided similar diversity profiles of abundant Bacteria and Archaea, compared to the domain-specific primers. About 16 % of all detected prokaryotic genera covering 30 % of total abundances and 6 % of PICRUSt2-estimated pathway abundances were affected by PMA. This showed that dead biomass in the anaerobic digesters impacted DNA-based assessments, with implications for predicting active processes, such as methanogenesis, denitrification or the identification of organisms associated with biological foams. Hence, instead of running two sequencing runs with two different domain-specific primers, we propose conducting PMA-seq with universal primer pairs for routine performance monitoring. However, dead sludge biomass may have some predictive value. In principal component analysis the compositional variation of 239 sludge metabolites resembled that of 'dead-plus-alive' biomass, suggesting that dead organisms contributed to the potentially process-relevant sludge metabolome.


Biological Monitoring , Sewage , Sewage/microbiology , Anaerobiosis , Bacteria/metabolism , Archaea/metabolism , DNA/metabolism , Victoria , Bioreactors/microbiology , Methane/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
20.
Sci Total Environ ; 922: 171279, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38428597

Kuwaiti hypersaline soil samples were contaminated with 5 % (w/w) weathered Kuwaiti light crude oil and bioaugmented with autochthonous halophilic hydrocarbonoclastic archaeal and bacterial strains, two each, individually and as consortia. Residual oil contents were determined, and microbial communities were analyzed by culture-dependent and culture-independent approaches initially and seasonally for one year. After one year of the bioremediation process, the mean oil degradation rate was similar across all treated soils including the controlled unbioaugmented one. Oil hydrocarbons were drastically reduced in all soil samples with values ranging from 82.7 % to 93 %. During the bioremediation process, the number of culturable oil-degrading bacteria increased to a range of 142 to 344 CFUx104 g-1 after 12 months of bioaugmentation. Although culture-independent analysis showed a high proportion of inoculants initially, none could be cultured throughout the bioremediation procedure. Within a year, microbial communities changed continually, and 33 species of halotolerant/halophilic hydrocarbonoclastic bacteria were isolated and identified belonged mainly to the three major bacterial phyla Actinobacteria, Proteobacteria, and Firmicutes. The archaeal phylum Halobacterota represented <1 % of the microbial community's relative abundance, which explains why none of its members were cultured. Improving the biodegradability of an already balanced environment by autochthonous bioaugmentation is more involved than just adding the proper oil degraders. This study emphasizes the possibility of a relatively large resistant population, a greater diversity of oil-degrading microorganisms, and the highly selective impacts of oil contamination on hypersaline soil bacterial communities.


Petroleum , Soil Pollutants , Archaea/metabolism , Biodegradation, Environmental , Soil , Soil Microbiology , Oils , Bacteria/metabolism , Petroleum/analysis , Hydrocarbons/metabolism , Soil Pollutants/analysis
...